• 论坛首页
  • 我的丁香客
  • 找人
    查找好友
  • 更多
    丁香园
    丁香通
    丁香人才
    丁香会议
    丁香搜索
    丁香医生
    丁香无线
    丁香导航
    丁当铺
    文献求助
    医药数据库
    丁香诊所
    来问医生
登录 注册

科技动态

关注今日:0 | 主题:423412
论坛首页  >  医药生命科学动态跟踪   >  丁香译站
  • 发帖
    每发1个新帖
    可以获得0.5个丁当奖励
  • 回帖

分享到:

  • 微信

    微信扫一扫

  • 微博
  • 丁香客
  • 复制网址

No. 9 医学论文翻译 肝外科手术后发病率和死亡率的风险预测因子:虚弱指数

  • 只看楼主
  • 页码直达:
  • 直达末页
楼主 dxy_pee5owq5
dxy_pee5owq5
入门站友

  • 0
    积分
  • 7
    得票
  • 38
    丁当
  • 1楼
这个帖子发布于4年零19天前,其中的信息可能已发生改变或有所发展。

【本期导读】

随着接受手术治疗的老年患者和并发症患者人数日益增多,术前鉴别患者肝切除术后发病率和死亡率变得越来越重要。本文旨在开发和验证虚弱指数(rFI),用以预测肝脏手术后的不良预后结果。rFI指数主要包括五个术前变量[美国麻醉学会评分(ASA)、体重指数(BMI)、血清白蛋白、血细胞比容、潜在病理学和肝切除术类型]。研究结果是,rFI具有良好辨别能力和风险分级能力,检测功能优于mFI等早期虚弱指数。


Frailty as a Risk Predictor of Morbidity and Mortality Following Liver Surgery

肝外科手术后发病率和死亡率的风险预测因子:虚弱指数

 

Abstract

摘要

 

Background

Given the increasing number of elderly and comorbid patients undergoing surgery, there is increased interest in preoperatively identifying patients at high risk of morbidity and mortality following liver resection. We sought to develop and validate the use of a frailty index (FI) to predict poor postoperative outcomes following liver surgery.

背景

随着接受手术治疗的老年患者和并发症患者人数日益增多,术前鉴别患者肝切除术后发病率和死亡率变得越来越重要。本文旨在开发和验证虚弱指数(FI),用以预测肝脏手术后的不良预后结果。

 

Methods

Patients undergoing a liver resection were identified using the National Surgical Quality Improvement Program Hepatectomy-targeted database for 2014 and randomized into a training or validation cohort. Multivariable logistic regression analysis was performed to develop a revised frailty index (rFI) to predict adverse postoperative clinical outcomes. Leave one out cross-validation was performed to validate the proposed rFI.

方法

全部患者按照2014年国家外科质量改进计划肝切除术数据库的鉴定结果接受肝脏切除手术,并随机纳入训练队列或验证队列。然后通过多变量逻辑回归分析,制定修订版虚弱指数(rFI),预测术后不良临床结果。最后进行交叉验证,验证rFI结果。

 

Results

A total of 2714 patients were identified who met the inclusion criteria. Postoperatively, 826 patients (30.4%) developed a postoperative complication, while 39 patients died within 30 days of surgery. Five preoperative variables (ASA class, BMI, serum albumin, hematocrit, underlying pathology, and type of liver resection) were used to develop the rFI. The rFI demonstrated good discrimination (AUROC = 0.68) and outperformed the previously proposed modified frailty index (mFI; AUROC = 0.53, p < 0.001) when evaluated among patients included in the training cohort. On validation, the rFI demonstrated good model discrimination (AUROC = 0.68) and was accurately able to risk-stratify patients within the validation cohort at risk for developing a postoperative complication, prolonged length-of-stay, and postoperative mortality (all p < 0.05).

结果

本研究共纳入了2714例符合入排标准的患者。术后826例(30.4%)出现并发症,其中39例患者术后30d内死亡。rFI指数主要包括五个术前变量[美国麻醉学会评分(ASA)、体重指数(BMI)、血清白蛋白、血细胞比容、潜在病理学和肝切除术类型]。训练队列患者的评估结果是,rFI具有良好辨别能力(AUROC = 0.68),结果优于早前提出的改良版虚弱指数(mFI; AUROC = 0.53,p <0.001)。验证队列患者的评估结果是,rFI是具有良好辨别能力的模型(AUROC = 0.68),同时可以准确地可以对验证队列的患者进行风险分级,包括具有术后并发症、住院时间延长和术后死亡风险的患者(P均 <0.05 )。

 

Conclusion

Frailty, as measured by the rFI, was predictive of increased risk of morbidity and mortality following liver surgery and can be used to guide patient decision-making.

结论

rFI测量结果显示,虚弱指数可以预测肝脏手术后增加的发病率和死亡风险,对于患者治疗方案的制定具有指导意义。

 

Keywords

Hepatic surgery  Liver Frailty  Mortality  Morbidity  Prediction

关键词

肝脏手术 肝脏虚弱指数 死亡率 发病率 预测

 

This study was previously presented as a poster presentation at the 57th Annual Meeting of the Society for Surgery of the Alimentary Tract held on May 21-24, 2016 in San Diego, CA and as a plenary presentation at the National Surgical Quality Improvement Program Conference held on July 19, 2016 in San Diego, CA.

本研究曾经为2016年5月21日至24日在加利福尼亚州圣地亚哥举行的消化道手术协会第57届年会提供海报展示,并纳入于2016年7月19日在加利福利亚州圣地亚哥举行的国家外科质量改进计划大会的全体会议日程。

 

The American College of Surgeons National Surgical Quality Improvement Program and the hospitals participating in the ACS NSQIP are the source of the data used herein; they have not verified and are not responsible for the statistical validity of the data analysis or the conclusions derived by the authors

本研究使用的数据来自美国外科医师学院国家外科质量改进计划(ACS NSQIP)和参与ACS NSQIP各大医院的数据库;ACS NSQIP及参与ACS NSQIP的各大医院对于本研究数据分析的有效性和数据结果不承担任何责任。

 

Electronic supplementary material

The online version of this article (doi:10.1007/s11605-017-3373-6) contains supplementary material, which is available to authorized users.

电子辅助材料

本研究的在线版本(doi:10.1007 / s11605-017-3373-6)包含电子辅助材料,可供授权用户使用。

 

Introduction

Given the recent improvements in surgical technique, patient selection, and perioperative care pathways, an increasing number of patients are considered candidates for liver resection.1–4 Despite an increasing number of liver resections performed each year, the morbidity associated with liver surgery remains high with an estimated 25–40% of patients developing some type of postoperative complication following surgery.5,6 Furthermore, given that an increasing proportion of elderly patients, as well as patients with underlying comorbidities will undergo surgery, the preoperative identification and subsequent risk stratification of patients at risk for developing adverse postoperative outcomes has taken on increased importance.7,8

简介

近年来,外科手术、患者选择和围手术期护理等技术不断进步,能够接受肝切除术的患者人数也不断增加。1-4 虽然每年接受肝切除术的患者人数有所上升,但是与肝脏手术相关的发病率一直居高不下,大约有25%—40%的患者手术后会产生一系列各种类型的术后并发症。5,6此外,由于接受肝脏手术的老年患者以及潜在合并症患者人数越来越多,术前鉴别以及对于可能出现不良术后结果的患者进行风险分级变得越来越重要。7,8

 

Frailty, a syndrome characterized by a decreased physiological reserve, has been identified as an important metric to measure and assess preoperative risk.7,9–11 Traditionally, frailty has been measured by combining a patient’s medical history, physical examination, and the assessment of physical and functional status. These proposed composite measures are, however, time consuming, subjective, and often not applicable to nationally representative research databases.12–15 Given the need to study population-based outcomes, Velanovich and colleagues mapped the 70 variables included within the frailty index (FI) proposed by the Canadian Study of Health and Aging (CSHA) onto the American College of Surgeons National Surgical Quality Improvement Program (ACS-NSQIP) database to develop a modified frailty index (mFI) consisting of 11 preoperative variables measuring patient frailty.16 While several previous studies have demonstrated an association between the mFI and adverse postoperative clinical outcomes including postoperative complications, increasing length-of-stay (LOS), and postoperative mortality, data used to calculate the mFI are not routinely collected in recent iterations/versions of the ACS-NSQIP databases.17–20

虚弱是人体老化的特征之一,也是衡量和评估术前风险的重要指标之一。7,9-11 一般来说,虚弱指数的测评包括患者病史、身体检查、身体和功能状态等评估数据。但是这种早期的综合测评方法即耗时又耗力,通常不适于成为全国代表性研究数据。12-15 由于虚弱指数是以人群为基础进行的研究分析,Velanovich及其同事将70个变量(由加拿大健康与老龄研究项目[CSHA]提交给美国外科医师学院国家外科质量改进计划[ACS-NSQIP]数据库)纳入虚弱指数研究,开发出由11个测量患者术前虚弱变量组成的升级版虚弱指数(mFI)。16早期的多项研究已经证明,mFI与术后不良临床结果之间存在关联性,其中包括术后并发症、医院停留时间(LOS)和术后死亡率,但是本研究用于计算mFI的数据并不是在最近的ACS-NSQIP迭代/版本中常规收集的数据。

 

Specifically, beginning in 2011, the reporting of five variables included within the mFI was made optional by the ACS-NSQIP, with data following 2012 not reporting these data altogether.21 As such, there is a need to develop a robust and clinically applicable preoperative frailty model that incorporates procedure-specific information to risk stratify patients.13,22–26 Given this, the objective of the current study was to develop and validate a parsimonious, clinically relevant frailty index using a nationally representative dataset of patient undergoing a liver resection. Additionally, we sought to compare the predictive power of the proposed revised frailty index (rFI) to existing frailty indices including the mFI.

也就是说,本研究中mFI纳入报告的五个变量选自ACS-NSQIP2011——2012年的研究数据,2012年以后的数据不包括在报告中。21因此,研究开发的术前虚弱模型必须拥有强大功能,能够应用于临床,同时可以将程序特异性信息用于患者风险分级。13,22-26 总之,本研究旨在使用接受肝切除术患者的国家代表性数据集,设计开发出一个简便的可供临床使用的虚弱指数。此外,还试图对比分析修订版虚弱指数(rFI)与现有虚弱指数(包括mFI)的临床检测预估能力。

 

 

Methods

方法

 

Study Population and Data Sources

The current analysis was performed using data from the ACS-NSQIP Hepatectomy Targeted Participant Use Data File (PUF) for 2014. The ACS-NSQIP PUF represents a quality improvement initiative by the ACS that collects data from over 500 institutions in patients undergoing surgery in North America. All data are prospectively reviewed by trained surgical reviewers/nurses and undergo a systematic audit to ensure inter-reviewer reliability and quality assurance. For each patient record, the ACS-NSQIP Hepatectomy Targeted PUF includes data pertaining to baseline demographics including patient age, sex, and race, as well as detailed clinical variables describing preoperative comorbidity, the primary indication for surgery, intra- and postoperative clinical details, 30-day postoperative morbidity, and 30-day postoperative mortality. All patient records are de-identified and compliant with the Health Insurance Portability and Accountability Act (HIPAA) of 1996. This study was approved by the Johns Hopkins University Institutional Review Board.

研究对象和数据来源

本研究的分析数据来自2014年ACS-NSQIP肝切除术参与者使用数据手册(PUF)。ACS-NSQIP PUF是ACS的一项质量改进计划,收集了美国北部500多家机构中接受手术的患者数据。所有数据由经过培训的外科评估员/护士进行前瞻性审查,并进行系统性审核,确保了审核数据的可靠性和质量。ACS-NSQIP肝切除术PUF的每一份患者记录均是与基线人口统计学有关的数据,其中包括患者年龄、性别和种族,以及描述术前并发症的详细临床变量、手术的主要指征、术中和术后临床的详细信息、 30d术后发病率、30d术后死亡率等等。所有患者记录均取消标识,并符合1996年“健康保险便携性和责任法案”(HIPAA)。本研究由约翰霍普金斯大学机构审查委员会批准。

 

Patients undergoing an elective major hepatectomy (Current Procedural Terminology [CPT] codes “47122,” “47125,” and “47130”) or an elective partial lobectomy (CPT code “47120”) between January 01, 2014 and December 31, 2014 were identified and included within the study population (Supplemental Figure 1). Patients who underwent surgery on an emergent basis or patients who were transferred in from another medical center were excluded from the final analysis. Using a previously described methodology, patients included within the final study population were randomized to either a training (70% of all patients) or validation cohort (30% of all patients).27

本研究纳入并评估了2014年1月1日至2014年12月31日期间接受选择性肝大部分切除术(现行程序术语[CPT]代码“47122”、“47125”和“47130”)或选择性部分肺叶切除术(CPT代码“47120”)的患者(补充图1)。本研究分析最终排除在紧急情况下进行手术的患者或从其他医疗中心转入的患者。本研究按照早期描述的方法,将全部入选患者随机分配到训练(患者总人数的70%)队列或验证队列(患者总人数的30%)。27

 

Preoperative patient body mass index (BMI) was classified according the World Health Organization (WHO) classification for BMI, while preoperative performance status was assessed using the American Society of Anesthesiologists (ASA) physical status classification score.28,29 Similarly, as previously defined, standardized values were used to define preoperative serum albumin (decreased serum albumin: albumin <3.5 g/L) and preoperative hematocrit (elevated hematocrit: ≥50.0% for men and ≥45.0% for women). An mFI, as proposed by Velanovich et al., was calculated for each patient using all variables with available data.16 For ease of analysis, patients were categorized into three groups based on their mFI score: mFI = 0, mFI = 1, and mFI ≥ 2 (out of a possible maximum score of 11). The primary outcome of interest was the development of either a postoperative complication or postoperative mortality within 30 days of surgery. Postoperative morbidity was defined using a composite measure for postoperative complications and included surgical site infections, pneumonia, need for intubation, ventilator dependence, venous thromboembolism (pulmonary embolism or deep venous thromboembolism), acute renal failure, urinary tract infections, myocardial infarction, bleeding, sepsis, bile leakage, liver failure, and postoperative coma.

术前患者体重指数(BMI)按照世界卫生组织(WHO)的BMI分类标准进行分类,而术前活动状态(PS)则采用美国麻醉医师协会(ASA)的身体状况分级标准。28,29同理,按照如前所述使用标准化值,定义术前血清白蛋白(血清白蛋白降低:白蛋白<3.5 g / L)和手术前血细胞比容(血细胞比容升高,男性≥50.0%,女性≥45.0%)。按照Velanovich等提出的mFI指数,使用具有可用数据的所有变量计算每个患者的mFI指数。16为了便于数据分析,根据mFI评分将患者分为三组:mFI = 0、mFI = 1和mFI≥2(最大可能得分为11)。感兴趣的主要结果是手术后30d内出现术后并发症或术后死亡。术后发病率定义为一种术后并发症的综合指标,包括手术部位感染、肺炎、插管需求、呼吸机依赖、静脉血栓栓塞(肺栓塞或深静脉血栓栓塞)、急性肾功能衰竭、尿路感染、心肌梗塞、出血、败血症、胆漏、肝功能衰竭、术后昏迷等等。

 

Statistical Analysis

Continuous data were reported as medians with interquartile range (IQR), while categorical data were reported as whole numbers and percentages. The Kruskal-Wallis test was used to compare continuous data, while categorical data were compared using Pearson’s chi-squared test. To generate our prediction model, univariable logistic regression analyses were performed to assess the association between preoperative characteristics and the development of either a postoperative complication or postoperative mortality among patients included within the training cohort, while receiver operative characteristic (ROC) curve analyses were performed to test the discriminatory (predictive power) ability of preoperative characteristics. Multivariable logistic regression was then performed to develop a parsimonious preoperative risk score including all preoperative variables demonstrating appropriate discrimination on univariable analysis.

统计分析

连续数据报告为具有四分位距(IQR)的中位数,而分类数据报告为整数和百分比。 Kruskal-Wallis检验用于比较连续数据,而Pearson卡方检验用于比较分类数据。本研究进行单因素Logistic回归分析,以评估术前特征与训练队列中患者术后并发症或术后死亡率发展的关系,从而产生预测模型。同时,进行接受者操作特性(ROC)曲线分析,测试术前特征的辨别能力(预测能力)。然后,进行多变量逻辑回归分析,开发简便的术前风险评分,包括所有术前变量,与单变量分析相比有一定的区别。

 

Final model selection was based on area under the receiver operative characteristic curve (AUROC) statistics, Akaike Information Criterion (AIC), and variance inflation factor analysis for colinearity. Results from the final multivariable logistic regression model were used to develop a clinically relevant nomogram to identify patients at risk for postoperative complications or postoperative mortality following a liver resection. Validation of the proposed nomogram was performed using a leave one out cross-validation methodology.30 Calibration of the proposed nomogram was evaluated among patients included within the validation cohort by comparing predicted probabilities to observed events. Statistical significance was defined by a p value of <0.05. All statistical analyses were performed using STATA version 14.0 (StataCorp, College Station, TX).

最终模型选择以接收操作特征曲线下的面积(AUROC)、Akaike信息标准(AIC)和共线性方差膨胀因子分析为准。最终多变量逻辑回归模型得出的结果用于开发临床相关的标准图,以确定患者肝切除术后出现术后并发症或术后死亡的风险。本研究采用留一法交叉验证方法,进行诺模图的验证。30通过将预测概率与观察到的事件进行对比分析,对验证队列内的患者进行诺模图分级标准的评估。p值<0.05定义为具有统计学意义。所有统计分析采用STATA版本14.0(StataCorp,College Station,TX)。


  • 邀请讨论
  • 不知道邀请谁?试试他们

    换一换
2017-03-27 19:57 浏览 : 4011 回复 : 4
  • 投票 1
  • 收藏 9
  • 打赏
  • 引用
  • 分享
    • 微信扫一扫

    • 新浪微博
    • 丁香客
    • 复制网址
  • 举报
    • 广告宣传推广
    • 政治敏感、违法虚假信息
    • 恶意灌水、重复发帖
    • 违规侵权、站友争执
    • 附件异常、链接失效
    • 其他
  • • 个人基本健康数据很重要
楼主 dxy_pee5owq5
dxy_pee5owq5
入门站友

  • 0
    积分
  • 7
    得票
  • 38
    丁当
  • 2楼

Results

结果

 

Baseline Patient, Disease, and Operative Characteristics

A total of 2714 patients were identified who underwent an elective liver resection and met the inclusion criteria (Table 1). The median age of the study population was 60 years (IQR: 50–68) with a slight majority of patients being female (n = 1400, 51.6%). The most common race was white (n = 1685, 63.5%), followed by Hispanic (n = 597, 22.5%), and black (n = 198, 7.5%). While nearly a third (n = 774, 28.8%) of patients who underwent liver resection presented a normal BMI, 35.1% (n = 943) and 34.4% (n = 924) of patients were categorized as either overweight (BMI = 25.0–29.9 kg/m2) or obese (BMI >30.0 kg/m2), respectively. Preoperatively, 72.9% (n = 1979) of patients were classified as ASA class III or IV, while 9 (0.3%) patients who underwent surgery reported a non-independent functional status. The median preoperative serum albumin among all patients was 4.0 g/L (IQR: 3.7–4.3) with 280 patients (10.3%) presenting with a decreased serum albumin. Similarly, 739 (27.2%) patients presented with a decreased sex-specific hematocrit at the time of admission.

基线患者、疾病和手术特征

本研究共评估了2714例接受了选择性肝切除术并符合入选标准的患者(表1)。研究人群的平均年龄为60岁(IQR:50-68岁),其中绝大多数为女性(n = 1400,51.6%)。最常见的种族是白人(n = 1685,63.5%),其次是西班牙裔(n = 597,22.5%)和黑人(n = 198,7.5%)。虽然接受肝切除术的患者中将近三分之一人的(n = 774,28.8%)BMI正常,但35.1%(n = 943)和34.4%(n = 924)患者分别为超重(BMI = 25.0- 29.9 kg / m2)或肥胖(BMI> 30.0 kg / m2)。术前72.9%(n = 1979)患者达到ASA III或IV级,9例(0.3%)患者手术报告为非独立功能状态。所有患者术前血清白蛋白中位数为4.0g / L(IQR:3.7-4.3),280例(10.3%)血清白蛋白降低。同时,739例(27.2%)患者在入院时出现性别特异性血细胞比容降低。

 

Among all patients who underwent surgery, 80% (n = 2171) underwent a liver resection for the treatment of a malignant disease including either liver metastasis (n = 1390, 51.2%) or primary liver/biliary cancers (n = 781, 28.8%). At the time of surgery, 61.8% (n = 1677) patients underwent a partial lobectomy while 38.2% of patients underwent either a tri-segmentectomy (n = 255, 9.4%), a left lobectomy (n = 271, 10.0%), or a right lobectomy (n = 511, 18.8%). Postoperatively, a total of 826 (30.4%) patients developed one or more postoperative complications within 30 days of surgery, while 39 patients died within 30 days of surgery for a 1.4% mortality (Table 2).

本研究纳入的所有患者中,80%(n = 2171)接受了肝切除术,用于治疗恶性疾病,包括肝转移癌(n = 1390,51.2%)或原发性肝/胆汁癌(n = 781,28.8% )。手术时,61.8%(n = 1677)的患者接受部分肺叶切除术,38.2%的患者接受三段切除术(n = 255,9.4%)、左肺叶切除术(n = 271,10.0%)或右肺叶切除术(n = 511,18.8%)。手术后,术后30d内共有826例(30.4%)患者发生一种或多种术后并发症,39例患者手术后30d内死亡,死亡率为1.4%(表2)。

 

Among all patients included within the final analysis, a total of 1900 patients (70.0%) were randomized to the training set used to develop the revised frailty index (rFI) while 814 (30.0%) were randomized to the validation set. Of note, no differences in patient or disease characteristics were identified between the two patient groups (all p > 0.05). Similarly, the incidence of postoperative complications and postoperative mortality was also noted to be comparable among patients included in either the training or the validation cohort (both p > 0.05).

本研究最终分析的所有患者中,共有1900例患者(70.0%)随机分配到用于制定修订版虚弱指数(rFI)的训练集中,而814例患者(30.0%)随机分配到验证集。值得注意的是,两组患者之间的患者或疾病特征的差异不具有统计学意义(p值均> 0.05)。同理,训练队列或验证队列中患者的术后并发率和术后死亡率也应该进行对比分析(P值均> 0.05)。

 

Development of the Revised Frailty Index and Generation of Frailty Nomogram

Univariable logistic regression analysis was performed to assess the association between preoperative patient and disease characteristics while ROC analysis was performed to assess the predictive power/discrimination of each variable to predict postoperative complications/postoperative mortality (Supplemental Table 1). Of note, the type of liver resection (AUROC = 0.62), preoperative hematocrit (AUROC = 0.58), and the primary underlying pathology (AUROC = 0.56) were identified as the preoperative characteristics with the highest discrimination against postoperative complications and postoperative mortality. In contrast, preoperative comorbidities such as those included within the mFI (history of diabetes mellitus, history of congestive heart failure, etc.) demonstrated poor discrimination (AUROC = 0.50 to 0.52).

修订版虚弱指数的开发和虚弱指数诺模图的生成

通过单因素Logistic回归分析,评估术前患者和疾病特征之间的关系,同时通过执行ROC分析,评估每个变量的预测能力/辨别能力,预测术后并发症/术后死亡率(补充表1)。值得注意的是,肝切除术类型(AUROC = 0.62)、术前血细胞比容(AUROC = 0.58)和主要潜在病理特征(AUROC = 0.56)确定为术后特征,具有最高的术后并发症和术后死亡率辨别能力。相比之下,术前并发症,如mFI纳入的并发症(糖尿病史、充血性心力衰竭病史等等)表现为辨别能力不足(AUROC = 0.50〜0.52)。

 

Results from the univariable analysis were then used to test preoperative characteristics on multivariable analysis to generate a parsimonious tool to predict postoperative complications/postoperative mortality. All preoperative variables were tested and each model was assessed for model fit, discrimination and colinearity. The final predictive model included preoperative BMI, preoperative ASA class, preoperative serum albumin, preoperative hematocrit, the underlying pathology, and the type of liver resection performed (Table 3). Results from the multivariable regression analysis were then used to construct a clinically applicable nomogram that used preoperative characteristics to calculate the predicted probability for developing a postoperative complication/postoperative mortality (Fig. 1). Of note, when compared with existing measures of frailty such as the mFI, the rFI nomogram demonstrated an improved discrimination with an AUROC of 0.68 compared with that of 0.53 for the mFI (p < 0.001).

然后将单因素分析结果用于多变量分析的术前特征检测,以产生简便的工具来预测术后并发症/术后死亡率。对所有术前变量进行测试,并对每个模型进行模型拟合、鉴别和共线评估。最终预测模型包括术前BMI、术前ASA分级、术前血清白蛋白、术前血细胞比容、潜在病理学和肝切除类型(表3)。然后使用多变量回归分析的结果构建适用于临床的诺模图,该诺模图使用术前特征来计算预测术后并发症/术后死亡率的出现概率(图1)。值得注意的是,与现有的虚弱评估指数(如mFI指数)相比,rFI诺模图显示,rFI的辨别能力(AUROC :0.68)高于mFI的辨别能力(AUROC:0.53),差异具有统计学意义(P <0.001)。

 

Validation of the Revised Frailty Index and Comparison with Existing Frailty Scores

Validation of the rFI score/nomogram was performed among patients included within the validation cohort. Of note, the rFI nomogram demonstrated good discrimination with a corresponding AUROC of 0.68. Furthermore, the rFI nomogram also outperformed the mFI, which demonstrated poor discrimination with a corresponding AUROC of 0.55 (p < 0.001, Supplemental Figure 2). To further test the calibration of the proposed nomogram, the incidence of observed adverse postoperative outcomes (complications, mortality, and length of stay) was compared among quartiles of calculated probability for developing a postoperative complication/postoperative mortality (Fig. 2a, b). An increasing probability of developing a postoperative complication/postoperative mortality as calculated using the nomogram was associated with a step-wise increase in the incidence of postoperative complications, mortality, and LOS. Specifically, among patients with the lowest probability (Q1) as calculated using the nomogram, 16.4% developed a postoperative complication, while 49.5% of patients with the highest probability (Q4) developed a postoperative complication (p < 0.001, Fig. 2a). Similarly, postoperative mortality increased from 1.1% among patients within the 50th percentile (Q2) by calculated probability to 3.0% among patients with the highest probability (Q4) as calculated using the proposed nomogram. In contrast, the mFI was unable to accurately stratify patients at risk for prolonged LOS (LOS >75th percentile = 8 days) or postoperative mortality LOS (Fig. 2b).

修订版虚弱指数的验证和与现有虚弱指数的对比

验证队列的患者进行rFI评分/诺模图验证。值得注意的是,rFI诺模图表现出良好的辨别能力,对应的AUROC值为0.68。此外,mFI的辨别能力不足,对应的AUROC值为0.55(p <0.001,补充图2),这表明rFI诺模图的鉴别能力比mFI的鉴别能力更好。为了进一步测试修订的诺模图分级标准,在发现术后并发症/术后死亡率的计算概率的四分位距之间比较观察到的不良术后结果(并发症、死亡率和停留时间)的发生率(图2a,b)。使用诺模图计算的术后并发症/术后死亡率的发生概率逐渐升高,这与术后并发症、死亡率和LOS发生率呈逐步上升趋势有关。具体来说,在使用诺模图计算的概率最低(Q1)患者中,16.4%出现术后并发症,而概率最高(Q4)患者中有49.5%出现术后并发症(p <0.001,图2a)。同理,术后死亡率从第50个百分位数(Q2)患者的1.1%增加到使用修订版诺模图计算的概率最高(Q4)患者的3.0%。相比之下,mFI无法对有LOS延长(LOS> 第75个百分位数= 8天)或术后死亡率LOS风险的患者进行准确地分级(图2b)。


2017-03-27 19:58
  • 投票 1
  • 收藏
  • 打赏
  • 引用
  • 分享
    • 微信扫一扫

    • 新浪微博
    • 丁香客
    • 复制网址
  • 举报
    • 广告宣传推广
    • 政治敏感、违法虚假信息
    • 恶意灌水、重复发帖
    • 违规侵权、站友争执
    • 附件异常、链接失效
    • 其他
  • • 2021内科主治73道全是病例分析题
楼主 dxy_pee5owq5
dxy_pee5owq5
入门站友

  • 0
    积分
  • 7
    得票
  • 38
    丁当
  • 3楼
Discussion 讨论 Although surgery is often the best hope of curative treatment for patients presenting with benign and malignant diseases of the liver, the risk of postoperative morbidity, prolonged LOS, and small—but real—chance of mortality associated with liver resection can offset any potential benefit associated with surgery.31,32 Furthermore, given the expanding indications for surgical resection coupled with an aging population, preoperative patient selection and risk assessment are increasingly important. Frailty, a physiological syndrome characterized by a systematic decrease in functional reserve, has been proposed as metric to evaluate a patient’s preoperative risk for adverse clinical outcomes.7,10 Assessing frailty can, however, be cumbersome and subjective, with traditional measures of frailty generated using a patient’s medical history, physical examination, and the evaluation of physical and functional status.14,33 In 2013, Velanovich and colleagues proposed an 11-point modified frailty index (mFI) using data collected from the ACS-NSQIP to identify patients at risk for adverse postoperative clinical outcomes including postoperative complications, increasing LOS, and postoperative mortality.16 虽然手术通常是对肝脏良恶性疾病患者进行根治性治疗的最佳手段,但是术后发病风险、LOS延长以及小比例但确切存在的死亡率均与肝切除术有关联性,这可能抵消了手术相关的潜在益处。31,32 由于老龄人口的手术切除的适应指征逐渐扩大,术前患者选择和风险评估变得越来越重要。研究人员提出,将虚弱指数(以功能储备系统性降低为特征的生理综合症)作为评估患者术前不良临床结果风险的度量标准。7,10 但是,虚弱指数的评估可能存在繁琐性和主观性,传统虚弱症状的检测以患者的病史、身体检查、身体和功能状态的评估为准。14,33 2013年,Velanovich及其同事使用ACS-NSQIP收集的数据提出了11项修正版虚弱指数(mFI),用以确定患者术后不良临床结果的风险,包括术后并发症、LOS延长和术后死亡率。16 With recent iterations of the ACS-NSQIP databases not reporting all variables included within the mFI, as well as a lack of accurate comparable measures of frailty, there exists a need for developing a new robust, easy to use, clinical tool to measure preoperative patient frailty. As such, the current study sought to develop a parsimonious frailty index to identify patients at risk for developing a postoperative complication or postoperative mortality following liver surgery. Using five routinely collected preoperative patient characteristics, we were able to develop and validate a clinically applicable revised frailty index to identify patients at risk for developing a postoperative complication or postoperative mortality. Of note, when compared with the previously proposed mFI, the rFI proposed in the current study demonstrated an improved discrimination and was more accurately able to risk-stratify patients undergoing liver surgery. In addition, data from the current study emphasize that frailty should be assessed relative to the procedure being considered. For example, a patient may be too frail to undergo a certain procedure, but not another. To that end, we sought to determine frailty relative to major versus minor hepatectomy. Part of any “expanded” concept of frailty should not only include factors of “decreased physiologic reserve,” but also consider these factors relative to the specific procedure. 由于最近的ACS-NSQIP数据库迭代不报告mFI纳入的所有变量,以及缺乏准确的可比较的虚弱标准,研究人员需要开发一种新的功能更强大且易于使用的临床工具,来测量术前患者的虚弱指数。因此,目前研究方向是寻求开发一种简便的虚弱指数,以确定在接受肝脏手术后出现术后并发症或术后死亡风险的患者。本研究使用五个常规收集的术前患者特征,开发和验证适用于临床的修订版虚弱指数,以确定出现术后并发症或术后死亡风险的患者。值得注意的是,与早前的虚弱指数mFI相比,本研究提出的虚弱指数rFI具有良好的辨别能力,能够更加准确地对接受肝脏手术的患者进行风险分级。此外,本研究的数据指出,虚弱指数的评估应该与考虑采用的手术相关。例如,患者可能体质太虚弱,不能进行某种手术,但是能够适用于其他手术。因此,本研究力求确定主要与次要肝切除术的虚弱指数。虚弱指数的所有“增加”部分,不仅要包括“生理储备减少”的因素,还要考虑这些因素与具体手术的关系。 Although the use of frailty to risk-stratify patients has been widely recognized, objective and clinical parameters for frailty are lacking. For example, most previous studies have proposed the use of patient gait speed and hand grip strength to assess preoperative patient frailty; however, these metrics are subjective and cumbersome to measure.33,34 Furthermore, other proposed metrics for frailty including sarcopenia are not routinely recorded and are therefore not included within most research databases.9 The appropriate and accurate preoperative identification of frail patients is particularly important owing to substantial heterogeneity in disease presentation as well as the variable physiological decline associated with malignant disease.7 In the current study, five routinely recorded preoperative patient and operative characteristics were used to develop a parsimonious and easy to use frailty index. Specifically, the proposed frailty index incorporated preoperative ASA class, preoperative patient BMI, the primary indication for surgery, type of liver resection, as well as preoperative laboratory values for albumin and hematocrit to develop a revised frailty index (rFI). Results of the current study are consistent with previous reports assessing the ability of the individual variables included within the rFI to identify frail patients, as well as predict adverse postoperative clinical outcomes. For example, in a prospective study of elderly patients, Corti et al. demonstrated that hypoalbuminemia was independently associated with an increased risk for mortality.35 In a separate study, Ganapathi and colleagues identified a decreased hematocrit as an independent risk factor for mortality.35,36 尽管使用虚弱指数对患者进行风险分级已经得到了广泛地认可,但是目前虚弱指数仍然缺乏客观的临床参数。例如,大多数早期的研究提出,使用患者步伐速度和手握力度来评估术前患者的虚弱指数;但是,这种虚弱指数具有主观性,测量起来比较麻烦。33,34此外,其他研究提出,虚弱指数的肌肉减少症指标通常不在记录范围内,因此,大多数研究数据库中也不包括肌肉减少症指标。9 因为疾病存在显着异质性以及恶性疾病通常与可变生理衰退相关,对于虚弱患者进行适当准确的术前鉴别变得尤为重要。7本研究采用5项常规记录的术前患者和手术特征,开发一款简洁易用的虚弱指数。具体来说,本研究采用术前ASA分级、术前患者BMI、手术的主要指征、肝切除类型,以及白蛋白和血细胞比容术前实验室值,用以制定修订版虚弱指数(rFI)。本研究的结果与早前的报告结果一致,早前报告评估了rFI包含的各个鉴别变量的能力,这些变量用于鉴别虚弱患者,并预测术后不良临床结果。例如,在一项老年患者的前瞻性研究中,Corti等证明,低白蛋白血症与死亡风险增加之间具有独立相关性。35此外,在另外一项研究中,Ganapathi及其同事发现,血细胞比容减少是与死亡率相关的独立危险因素。35,36 Similarly, previous studies have reported variable postoperative outcomes relative to preoperative patient ASA class, indication for surgery, as well as extent of surgical resection.13,23–25 Of note, the proposed revised frailty index demonstrated good discrimination in both training and validation cohorts (AUROC = 0.68) and consistently outperformed the mFI as proposed by Velanovich and colleagues, which demonstrated poor discriminatory ability (AUROC = 0.55). Interestingly, when patients were stratified according to the calculated probability of developing a postoperative complication or postoperative mortality, only the proposed rFI was accurately able to risk-stratify patients at risk for developing a postoperative complication, postoperative mortality, and a prolonged LOS. In contrast, the mFI was unable to accurately risk stratify patients with regard to risk of a prolonged LOS or 30-day mortality. Additionally, given that variables included in the mFI are not routinely recorded in more recent years of the ACS-NSQIP database, the mFI should be abandoned as a tool to identify frail patients at risk for adverse complications within the ACS-NSQIP database. Rather, the data suggest that the proposed rFI represents an accurate, easy-to-use, risk-stratification tool that can be used within research databases, as well as the clinical setting preoperatively to predict a patient’s risk for developing an adverse postoperative clinical outcome following liver surgery. 同理,早前的研究报道了与术前患者ASA分级、手术指征以及手术切除程度相关的术后变化结果。13,23-25 值得注意的是,拟议的修订版虚弱指数在训练队列和验证队列(AUROC = 0.68)中均表现出良好鉴别能力,并且一直优于 Velanovich及其同事提倡的mFI的鉴别能力,mFI的鉴别能力较差(AUROC = 0.55)。有趣的是,在根据计算得出的术后并发症或术后死亡率的可能性对患者进行分级时,只有修订版rFI可以对可能发生术后并发症、术后死亡率和LOS延长风险的患者进行准确地风险分级。相比之下,mFI 无法对发生LOS延长或30d死亡风险的患者进行准确地风险分级。另外,由于最近几年mFI包含的变量在ACS-NSQIP数据库中没有得到定期地记录,所以研究人员不应该继续将mFI作为识别ACS-NSQIP数据库中有不良并发症风险的身体虚弱患者的工具。相反,研究数据表明,提出的修订版rFI是辨别准确,易于使用的风险分级工具,可用于研究数据库,以及术前临床安排,以预测患者接受肝脏手术后发展为不良术后临床结局的风险。 The current study should be interpreted with several limitations. As the current study included data collected from the ACS-NSQIP Targeted Hepatectomy PUF, we were unable to assess the ability of the proposed rFI to predict long-term clinical outcomes including readmissions after 30 days of discharge and overall/disease-specific survival. In addition, using data collected from the ACS-NSQIP, we were limited by the data contained within the PUF and therefore could not incorporate other validated parameters of frailty such as sarcopenia, hand grip strength, or gait speed into our frailty index. Lastly, as the ACS-NSQIP collects and reports data from only from select, participating hospitals, it is possible that our data may not reflect the experiences at all hospital within North America. However, given the regionalization of elective liver resection, these differences are likely negligible. 本研究的结果具有一定的局限性。因为本研究收集的分析数据来自ACS-NSQIP肝切除术PUF参与者使用数据手册,所以无法评估修订版rFI预测长期临床结果的能力,包括出院30d后再次入院和总体/疾病特异性生存。此外,因为本研究使用收集的数据来自ACS-NSQIP数据库,研究结果受到PUF包含数据的限制,所以不能纳入其他有效地虚弱参数,如无法将肌肉减少症、手抓力量或步态速度纳入修订版虚弱指数。最后,由于ACS-NSQIP只从筛选过后参与研究的医院中收集和报告数据,因此本研究的数据可能无法反映北美所有医院的先验信息。然而,由于选择性肝切除术的区域化特征,这些差异可以忽略不计。 Conclusion 结论 Using a large, nationally representative cohort of patients undergoing an elective liver resection, routine preoperative clinical characteristics were combined to develop a frailty index as part of a risk predictor of postoperative complications and postoperative mortality following liver surgery. Upon external validation, the proposed rFI demonstrated good discrimination and calibration and outperformed the widely used mFI in predicting adverse postoperative outcomes. The rFI represents an accurate, easy-to-use clinical tool that should be used to identify patients at risk for adverse postoperative outcomes following liver surgery. 本研究采用接受选择性肝切除术患者的大型全国代表性队列,并结合常规术前临床特征,开发了一款虚弱指数,作为肝脏手术术后并发症和术后死亡率风险预测因子的一部分。通过外部验证后,提出的修订版rFI具有良好辨别能力和分级标准,并且其辨别能力和分级标准均优于广泛应用于预测术后不良结果的mFI指数。rFI是一种检测准确、易于使用的临床工具,可以应用于识别接受肝脏手术后会出现不良术后风险结果的患者。
2017-03-27 19:59
  • 投票 2
  • 收藏 1
  • 打赏
  • 引用
  • 分享
    • 微信扫一扫

    • 新浪微博
    • 丁香客
    • 复制网址
  • 举报
    • 广告宣传推广
    • 政治敏感、违法虚假信息
    • 恶意灌水、重复发帖
    • 违规侵权、站友争执
    • 附件异常、链接失效
    • 其他
  • • 微塑料成为病原体和抗药性细菌的“中心”
纳滋槑
纳滋槑
未知
入门站友

  • 0
    积分
  • 0
    得票
  • 93
    丁当
  • 4楼
求参考文献
2017-06-05 21:55 来自 Android客户端
  • 投票
  • 收藏
  • 打赏
  • 引用
  • 分享
    • 微信扫一扫

    • 新浪微博
    • 丁香客
    • 复制网址
  • 举报
    • 广告宣传推广
    • 政治敏感、违法虚假信息
    • 恶意灌水、重复发帖
    • 违规侵权、站友争执
    • 附件异常、链接失效
    • 其他
  • • 2021中级内科303题目回顾(随时更新)

关闭提示

需要2个丁当

丁香园旗下网站

  • 丁香园
  • 用药助手
  • 丁香通
  • 文献求助
  • 丁香人才
  • 丁香医生
  • 丁香导航
  • 丁香会议
  • 手机丁香园
  • 医药数据库

关于丁香园

  • 关于我们
  • 丁香园标志
  • 友情链接
  • 联系我们
  • 加盟丁香园
  • 版权声明
  • 资格证书

官方链接

  • 丁香志
  • 丁香园新浪微博
引用回复